Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 29(21): 3657-3668.e5, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31543454

RESUMO

To overcome nitrogen deficiencies in the soil, legumes enter symbioses with rhizobial bacteria that convert atmospheric nitrogen into ammonium. Rhizobia are accommodated as endosymbionts within lateral root organs called nodules that initiate from the inner layers of Medicago truncatula roots in response to rhizobial perception. In contrast, lateral roots emerge from predefined founder cells as an adaptive response to environmental stimuli, including water and nutrient availability. CYTOKININ RESPONSE 1 (CRE1)-mediated signaling in the pericycle and in the cortex is necessary and sufficient for nodulation, whereas cytokinin is antagonistic to lateral root development, with cre1 showing increased lateral root emergence and decreased nodulation. To better understand the relatedness between nodule and lateral root development, we undertook a comparative analysis of these two root developmental programs. Here, we demonstrate that despite differential induction, lateral roots and nodules share overlapping developmental programs, with mutants in LOB-DOMAIN PROTEIN 16 (LBD16) showing equivalent defects in nodule and lateral root initiation. The cytokinin-inducible transcription factor NODULE INCEPTION (NIN) allows induction of this program during nodulation through activation of LBD16 that promotes auxin biosynthesis via transcriptional induction of STYLISH (STY) and YUCCAs (YUC). We conclude that cytokinin facilitates local auxin accumulation through NIN promotion of LBD16, which activates a nodule developmental program overlapping with that induced during lateral root initiation.


Assuntos
Medicago truncatula/genética , Organogênese Vegetal/genética , Proteínas de Plantas/genética , Nodulação/genética , Raízes de Plantas/crescimento & desenvolvimento , Simbiose , Fatores de Transcrição/genética , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Fatores de Transcrição/metabolismo
2.
Mol Plant ; 12(6): 863-878, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31128274

RESUMO

The phytohormone auxin is implied in steering various developmental decisions during plant morphogenesis in a concentration-dependent manner. Auxin maxima have been shown to maintain meristematic activity, for example, of the root apical meristem, and position new sites of outgrowth, such as during lateral root initiation and phyllotaxis. More recently, it has been demonstrated that sites of auxin minima also provide positional information. In the developing Arabidopsis fruit, auxin minima are required for correct differentiation of the valve margin. It remains unclear, however, how this auxin minimum is generated and maintained. Here, we employ a systems biology approach to model auxin transport based on experimental observations. This allows us to determine the minimal requirements for its establishment. Our simulations reveal that two alternative processes-which we coin "flux-barrier" and "flux-passage"-are both able to generate an auxin minimum, but under different parameter settings. Both models are in principle able to yield similar auxin profiles but present qualitatively distinct patterns of auxin flux. The models were tested by tissue-specific inducible ablation, revealing that the auxin minimum in the fruit is most likely generated by a flux-passage process. Model predictions were further supported through 3D PIN localization imaging and implementing experimentally observed transporter localization. Through such an experimental-modeling cycle, we predict how the auxin minimum gradually matures during fruit development to ensure timely fruit opening and seed dispersal.


Assuntos
Frutas/metabolismo , Ácidos Indolacéticos/metabolismo , Biologia de Sistemas/métodos , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Modelos Teóricos
4.
Nat Rev Mol Cell Biol ; 20(6): 384, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31000809

RESUMO

In the above article, the name of the first author was spelled incorrectly. This has been corrected in the HTML and PDF versions of the article.

5.
Development ; 145(6)2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29444894

RESUMO

Quantifying cell morphology is fundamental to the statistical study of cell populations, and can help unravel mechanisms underlying cell and tissue morphogenesis. Current methods, however, require extensive human intervention, are highly parameter sensitive, or produce metrics that are difficult to interpret biologically. We therefore developed a method, lobe contribution elliptical Fourier analysis (LOCO-EFA), which generates from digitalised two-dimensional cell outlines meaningful descriptors that can be directly matched to morphological features. This is shown by studying well-defined geometric shapes as well as actual biological cells from plant and animal tissues. LOCO-EFA provides a tool to phenotype efficiently and objectively populations of cells, here demonstrated by applying it to the complex shaped pavement cells of Arabidopsis thaliana wild-type and speechless leaves, and Drosophila amnioserosa cells. To validate our method's applicability to large populations, we analysed computer-generated tissues. By controlling in silico cell shape, we explored the potential impact of cell packing on individual cell shape, quantifying through LOCO-EFA deviations between the specified shape of single cells in isolation and the resultant shape when they interact within a confluent tissue.


Assuntos
Forma Celular , Análise de Fourier , Morfogênese , Animais , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Simulação por Computador , Drosophila/citologia , Processamento de Imagem Assistida por Computador/métodos , Fenótipo , Células Vegetais , Folhas de Planta/citologia
6.
Development ; 144(23): 4386-4397, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29084800

RESUMO

D'Arcy Thompson emphasised the importance of surface tension as a potential driving force in establishing cell shape and topology within tissues. Leaf epidermal pavement cells grow into jigsaw-piece shapes, highly deviating from such classical forms. We investigate the topology of developing Arabidopsis leaves composed solely of pavement cells. Image analysis of around 50,000 cells reveals a clear and unique topological signature, deviating from previously studied epidermal tissues. This topological distribution is established early during leaf development, already before the typical pavement cell shapes emerge, with topological homeostasis maintained throughout growth and unaltered between division and maturation zones. Simulating graph models, we identify a heuristic cellular division rule that reproduces the observed topology. Our parsimonious model predicts how and when cells effectively place their division plane with respect to their neighbours. We verify the predicted dynamics through in vivo tracking of 800 mitotic events, and conclude that the distinct topology is not a direct consequence of the jigsaw piece-like shape of the cells, but rather owes itself to a strongly life history-driven process, with limited impact from cell-surface mechanics.


Assuntos
Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Fenômenos Biomecânicos , Divisão Celular , Genes de Plantas , Mitose , Modelos Biológicos , Mutação , Desenvolvimento Vegetal/genética , Desenvolvimento Vegetal/fisiologia , Epiderme Vegetal/citologia , Epiderme Vegetal/genética , Epiderme Vegetal/crescimento & desenvolvimento , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas
7.
Elife ; 62017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28870285

RESUMO

Nutrient uptake by roots often involves substrate-dependent regulated nutrient transporters. For robust uptake, the system requires a regulatory circuit within cells and a collective, coordinated behaviour across the tissue. A paradigm for such systems is boron uptake, known for its directional transport and homeostasis, as boron is essential for plant growth but toxic at high concentrations. In Arabidopsis thaliana, boron uptake occurs via diffusion facilitators (NIPs) and exporters (BORs), each presenting distinct polarity. Intriguingly, although boron soil concentrations are homogenous and stable, both transporters manifest strikingly swift boron-dependent regulation. Through mathematical modelling, we demonstrate that slower regulation of these transporters leads to physiologically detrimental oscillatory behaviour. Cells become periodically exposed to potentially cytotoxic boron levels, and nutrient throughput to the xylem becomes hampered. We conclude that, while maintaining homeostasis, swift transporter regulation within a polarised tissue context is critical to prevent intrinsic traffic-jam like behaviour of nutrient flow.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/metabolismo , Boro/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/metabolismo , Oligoelementos/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Modelos Teóricos
8.
Proc Natl Acad Sci U S A ; 114(36): E7641-E7649, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28831001

RESUMO

In multicellular organisms, a stringent control of the transition between cell division and differentiation is crucial for correct tissue and organ development. In the Arabidopsis root, the boundary between dividing and differentiating cells is positioned by the antagonistic interaction of the hormones auxin and cytokinin. Cytokinin affects polar auxin transport, but how this impacts the positional information required to establish this tissue boundary, is still unknown. By combining computational modeling with molecular genetics, we show that boundary formation is dependent on cytokinin's control on auxin polar transport and degradation. The regulation of both processes shapes the auxin profile in a well-defined auxin minimum. This auxin minimum positions the boundary between dividing and differentiating cells, acting as a trigger for this developmental transition, thus controlling meristem size.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/fisiologia , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/fisiologia , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Meristema/metabolismo , Meristema/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/fisiologia
9.
Curr Opin Cell Biol ; 44: 51-58, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28347931

RESUMO

Cells within tissues can be regarded as autonomous entities that respond to their local environment and to signals from neighbours. Coordination between cells is particularly important in plants, as the architecture of the plant adapts to environmental cues. To explain the architectural plasticity of the root, we propose to view it as a swarm of coupled multi-cellular structures, rhizomers, rather than a large set of autonomous cells. Each rhizomer contains a primed site with the potential to develop a single lateral root. Rhizomers are spaced through oscillatory genetic events that occur at the basal root tip. The decision whether or not to develop a lateral root primordium results from the interplay between local interactions of the rhizomer with its immediate environment, such as local nutrient availability, long-range interactions between the rhizomers and global cues, such as overall nutrient uptake. It can halt lateral root progression through its developmental stages, resulting in the observed complex root architecture.


Assuntos
Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais , Solo/química
10.
PLoS Comput Biol ; 11(10): e1004450, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26505899

RESUMO

An auxin maximum is positioned along the xylem axis of the Arabidopsis root tip. The pattern depends on mutual feedback between auxin and cytokinins mediated by the PIN class of auxin efflux transporters and AHP6, an inhibitor of cytokinin signalling. This interaction has been proposed to regulate the size and the position of the hormones' respective signalling domains and specify distinct boundaries between them. To understand the dynamics of this regulatory network, we implemented a parsimonious computational model of auxin transport that considers hormonal regulation of the auxin transporters within a spatial context, explicitly taking into account cell shape and polarity and the presence of cell walls. Our analysis reveals that an informative spatial pattern in cytokinin levels generated by diffusion is a theoretically unlikely scenario. Furthermore, our model shows that such a pattern is not required for correct and robust auxin patterning. Instead, auxin-dependent modifications of cytokinin response, rather than variations in cytokinin levels, allow for the necessary feedbacks, which can amplify and stabilise the auxin maximum. Our simulations demonstrate the importance of hormonal regulation of auxin efflux for pattern robustness. While involvement of the PIN proteins in vascular patterning is well established, we predict and experimentally verify a role of AUX1 and LAX1/2 auxin influx transporters in this process. Furthermore, we show that polar localisation of PIN1 generates an auxin flux circuit that not only stabilises the accumulation of auxin within the xylem axis, but also provides a mechanism for auxin to accumulate specifically in the xylem-pole pericycle cells, an important early step in lateral root initiation. The model also revealed that pericycle cells on opposite xylem poles compete for auxin accumulation, consistent with the observation that lateral roots are not initiated opposite to each other.


Assuntos
Arabidopsis/fisiologia , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Modelos Biológicos , Raízes de Plantas/crescimento & desenvolvimento , Feixe Vascular de Plantas/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Simulação por Computador , Proteínas de Membrana Transportadoras , Reguladores de Crescimento de Plantas/metabolismo
11.
BMC Biophys ; 8: 8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26023328

RESUMO

BACKGROUND: The biophysical characteristics of cells determine their shape in isolation and when packed within tissues. Cells can form regular or irregular epithelial structures, round up and form clusters, or deform and attach to substrates. The acquired shape of cells and tissues is a consequence of (i) internal cytoskeletal processes, such as actin polymerisation and cortical myosin contraction, (ii) adhesion molecules within the cell membrane that interact with substrates and neighbouring cells, and (iii) processes that regulate cell volume. Although these processes seem relatively simple, when combined they unleash a rich variety of cellular behaviour that is not readily understandable outside a theoretical framework. METHODS: We perform a mathematical analysis of a commonly used class of model formalisms that describe cell surface mechanics using an energy-based approach. Predictions are then confirmed through comparison with the computational outcomes of a Vertex model and 2D and 3D simulations of the Cellular Potts model. RESULTS: The analytical study reveals the complete possible spectrum of single cell behaviour and tissue packing in both 2D and 3D, by taking the typical core elements of cell surface mechanics into account: adhesion, cortical tension and volume conservation. We show that from an energy-based description, forces and tensions can be derived, as well as the prediction of cell behaviour and tissue packing, providing an intuitive and biologically relevant mapping between modelling parameters and experiments. CONCLUSIONS: The quantitative cellular behaviours and biological insights agree between the analytical study and the diverse computational model formalisms, including the Cellular Potts model. This illustrates the generality of energy-based approaches for cell surface mechanics and highlights how meaningful and quantitative comparisons between models can be established. Moreover, the mathematical analysis reveals direct links between known biophysical properties and specific parameter settings within the Cellular Potts model.

12.
Plant Cell Physiol ; 56(4): 620-30, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25670713

RESUMO

Boron, an essential micronutrient, is transported in roots of Arabidopsis thaliana mainly by two different types of transporters, BORs and NIPs (nodulin26-like intrinsic proteins). Both are plasma membrane localized, but have distinct transport properties and patterns of cell type-specific accumulation with different polar localizations, which are likely to affect boron distribution. Here, we used mathematical modeling and an experimental determination to address boron distributions in the root. A computational model of the root is created at the cellular level, describing the boron transporters as observed experimentally. Boron is allowed to diffuse into roots, in cells and cell walls, and to be transported over plasma membranes, reflecting the properties of the different transporters. The model predicts that a region around the quiescent center has a higher concentration of soluble boron than other portions. To evaluate this prediction experimentally, we determined the boron distribution in roots using laser ablation-inductivity coupled plasma-mass spectrometry. The analysis indicated that the boron concentration is highest near the tip and is lower in the more proximal region of the meristem zone, similar to the pattern of soluble boron distribution predicted by the model. Our model also predicts that upward boron flux does not continuously increase from the root tip toward the mature region, indicating that boron taken up in the root tip is not efficiently transported to shoots. This suggests that root tip-absorbed boron is probably used for local root growth, and that instead it is the more mature root regions which have a greater role in transporting boron toward the shoots.


Assuntos
Arabidopsis/metabolismo , Boro/metabolismo , Meristema/metabolismo , Modelos Biológicos , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Simulação por Computador , Difusão , Lasers , Reprodutibilidade dos Testes , Solubilidade , Espectrofotometria Atômica
13.
J Integr Plant Biol ; 55(9): 847-63, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23869979

RESUMO

In the past 20-30 years, developmental biologists have made tremendous progress in identifying genes required for the specification of individual cell types of an organ and in describing how they interact in genetic networks. In comparison, very little is known about the mechanisms that regulate tissue polarity and overall organ patterning. Gynoecia and fruits from members of the Brassicaceae family of flowering plants provide excellent model systems to study organ patterning and tissue specification because they become partitioned into distinct domains whose formation is determined by polarity establishment both at a cellular and whole tissue level. Interactions among key regulators of Arabidopsis gynoecium and fruit development have revealed a network of upstream transcription factor activities required for such tissue differentiation. Regulation of the plant hormone auxin is emerging as both an immediate downstream output and input of these activities, and here we aim to provide an overview of the current knowledge regarding the link between auxin and female reproductive development in plants. In this review, we will also demonstrate how available data can be exploited in a mathematical modeling approach to reveal and understand the feedback regulatory circuits that underpin the polarity establishment, necessary to guide auxin flows.


Assuntos
Flores/efeitos dos fármacos , Flores/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia , Polaridade Celular/efeitos dos fármacos , Flores/anatomia & histologia , Flores/citologia , Reprodução/efeitos dos fármacos
14.
Development ; 140(10): 2061-74, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23633507

RESUMO

Tissue cell polarity plays a major role in plant and animal development. We propose that a fundamental building block for tissue cell polarity is the process of intracellular partitioning, which can establish individual cell polarity in the absence of asymmetric cues. Coordination of polarities may then arise through cell-cell coupling, which can operate directly, through membrane-spanning complexes, or indirectly, through diffusible molecules. Polarity is anchored to tissues through organisers located at boundaries. We show how this intracellular partitioning-based framework can be applied to both plant and animal systems, allowing different processes to be placed in a common evolutionary and mechanistic context.


Assuntos
Polaridade Celular , Regulação da Expressão Gênica no Desenvolvimento , Fenômenos Fisiológicos Vegetais , Animais , Transporte Biológico , Comunicação Celular , Citosol/metabolismo , Drosophila/embriologia , Ácidos Indolacéticos/metabolismo , Morfogênese , Plantas , Transdução de Sinais
15.
Bull Math Biol ; 74(11): 2570-99, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22956290

RESUMO

Cell polarization is an important part of the response of eukaryotic cells to stimuli, and forms a primary step in cell motility, differentiation, and many cellular functions. Among the important biochemical players implicated in the onset of intracellular asymmetries that constitute the early phases of polarization are the Rho GTPases, such as Cdc42, Rac, and Rho, which present high active concentration levels in a spatially localized manner. Rho GTPases exhibit positive feedback-driven interconversion between distinct active and inactive forms, the former residing on the cell membrane, and the latter predominantly in the cytosol. A deterministic model of the dynamics of a single Rho GTPase described earlier by Mori et al. exhibits sustained polarization by a wave-pinning mechanism. It remained, however, unclear how such polarization behaves at typically low cellular concentrations, as stochasticity could significantly affect the dynamics. We therefore study the low copy number dynamics of this model, using a stochastic kinetics framework based on the Gillespie algorithm, and propose statistical and analytic techniques which help us analyse the equilibrium behaviour of our stochastic system. We use local perturbation analysis to predict parameter regimes for initiation of polarity and wave-pinning in our deterministic system, and compare these predictions with deterministic and stochastic spatial simulations. Comparing the behaviour of the stochastic with the deterministic system, we determine the threshold number of molecules required for robust polarization in a given effective reaction volume. We show that when the molecule number is lowered wave-pinning behaviour is lost due to an increasingly large transition zone as well as increasing fluctuations in the pinning position, due to which a broadness can be reached that is unsustainable, causing the collapse of the wave, while the variations in the high and low equilibrium levels are much less affected.


Assuntos
Polaridade Celular/fisiologia , Células Eucarióticas/fisiologia , Modelos Biológicos , Células Eucarióticas/enzimologia , Cinética , Análise Numérica Assistida por Computador , Processos Estocásticos , Proteínas rho de Ligação ao GTP/metabolismo
16.
Cell ; 150(5): 1002-15, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22921914

RESUMO

In plants, where cells cannot migrate, asymmetric cell divisions (ACDs) must be confined to the appropriate spatial context. We investigate tissue-generating asymmetric divisions in a stem cell daughter within the Arabidopsis root. Spatial restriction of these divisions requires physical binding of the stem cell regulator SCARECROW (SCR) by the RETINOBLASTOMA-RELATED (RBR) protein. In the stem cell niche, SCR activity is counteracted by phosphorylation of RBR through a cyclinD6;1-CDK complex. This cyclin is itself under transcriptional control of SCR and its partner SHORT ROOT (SHR), creating a robust bistable circuit with either high or low SHR-SCR complex activity. Auxin biases this circuit by promoting CYCD6;1 transcription. Mathematical modeling shows that ACDs are only switched on after integration of radial and longitudinal information, determined by SHR and auxin distribution, respectively. Coupling of cell-cycle progression to protein degradation resets the circuit, resulting in a "flip flop" that constrains asymmetric cell division to the stem cell region.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Raízes de Plantas/citologia , Sequência de Aminoácidos , Divisão Celular Assimétrica , Ciclina D/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Ácidos Indolacéticos/metabolismo , Células do Mesofilo/metabolismo , Dados de Sequência Molecular , Fosforilação , Raízes de Plantas/metabolismo , Alinhamento de Sequência
17.
BMC Syst Biol ; 6: 37, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22583698

RESUMO

BACKGROUND: In developmental biology, there has been a recent focus on the robustness of morphogen gradients as possible providers of positional information. It was shown that functional morphogen gradients present strong biophysical constraints and lack of robustness to noise. Here we explore how the details of the mechanism which underlies the generation of a morphogen gradient can influence those properties. RESULTS: We contrast three gradient-generating mechanisms, (i) a source-decay mechanism; and (ii) a unidirectional transport mechanism; and (iii) a so-called reflux-loop mechanism. Focusing on the dynamics of the phytohormone auxin in the root, we show that only the reflux-loop mechanism can generate a gradient that would be adequate to supply functional positional information for the Arabidopsis root, for biophysically reasonable kinetic parameters. CONCLUSIONS: We argue that traits that differ in spatial and temporal time-scales can impose complex selective pressures on the mechanism of morphogen gradient formation used for the development of the particular organism.


Assuntos
Modelos Biológicos , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Transporte Biológico , Fenômenos Biofísicos , Ácidos Indolacéticos/metabolismo , Cinética , Análise Espaço-Temporal
18.
PLoS Comput Biol ; 8(3): e1002402, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22396633

RESUMO

To regulate shape changes, motility and chemotaxis in eukaryotic cells, signal transduction pathways channel extracellular stimuli to the reorganization of the actin cytoskeleton. The complexity of such networks makes it difficult to understand the roles of individual components, let alone their interactions and multiple feedbacks within a given layer and between layers of signalling. Even more challenging is the question of if and how the shape of the cell affects and is affected by this internal spatiotemporal reorganization. Here we build on our previous 2D cell motility model where signalling from the Rho family GTPases (Cdc42, Rac, and Rho) was shown to organize the cell polarization, actin reorganization, shape change, and motility in simple gradients. We extend this work in two ways: First, we investigate the effects of the feedback between the phosphoinositides (PIs) PIP2, PIP3 and Rho family GTPases. We show how that feedback increases heights and breadths of zones of Cdc42 activity, facilitating global communication between competing cell "fronts". This hastens the commitment to a single lamellipodium initiated in response to multiple, complex, or rapidly changing stimuli. Second, we show how cell shape feeds back on internal distribution of GTPases. Constraints on chemical isocline curvature imposed by boundary conditions results in the fact that dynamic cell shape leads to faster biochemical redistribution when the cell is repolarized. Cells with frozen cytoskeleton, and static shapes, consequently respond more slowly to reorienting stimuli than cells with dynamic shape changes, the degree of the shape-induced effects being proportional to the extent of cell deformation. We explain these concepts in the context of several in silico experiments using our 2D computational cell model.


Assuntos
Polaridade Celular/fisiologia , Tamanho Celular , Quimiotaxia/fisiologia , Modelos Biológicos , Fosfatidilinositóis/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Simulação por Computador , Retroalimentação Fisiológica/fisiologia , Humanos
19.
Curr Opin Plant Biol ; 12(5): 606-14, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19709922

RESUMO

There has been a recent surge of studies in plant biology that combine experimental data with computational modeling. Here, we categorize a diversity of theoretical models and emphasize the need to tailor modeling approaches to the questions at hand. Models can start from biophysical or purely heuristic basic principles, and can focus at several levels of biological organization. Recent examples illustrate that this entire spectrum can be useful to understand plant development, and point to a future direction where more approaches are combined in fruitful ways--either by proving the same result with different basic principles or by exploring interactions across levels, in the so-called multilevel models.


Assuntos
Biologia Computacional , Modelos Biológicos , Desenvolvimento Vegetal , Morfogênese
20.
PLoS Biol ; 6(12): e307, 2008 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-19090618

RESUMO

Lateral organ position along roots and shoots largely determines plant architecture, and depends on auxin distribution patterns. Determination of the underlying patterning mechanisms has hitherto been complicated because they operate during growth and division. Here, we show by experiments and computational modeling that curvature of the Arabidopsis root influences cell sizes, which, together with tissue properties that determine auxin transport, induces higher auxin levels in the pericycle cells on the outside of the curve. The abundance and position of the auxin transporters restricts this response to the zone competent for lateral root formation. The auxin import facilitator, AUX1, is up-regulated by auxin, resulting in additional local auxin import, thus creating a new auxin maximum that triggers organ formation. Longitudinal spacing of lateral roots is modulated by PIN proteins that promote auxin efflux, and pin2,3,7 triple mutants show impaired lateral inhibition. Thus, lateral root patterning combines a trigger, such as cell size difference due to bending, with a self-organizing system that mediates alterations in auxin transport.


Assuntos
Ácidos Indolacéticos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular , Biologia Computacional , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Modelos Biológicos , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...